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We investigate the Kondo effect and superconductivity in ultrasmall grains by using a model, which consists
of sd and BCS Hamiltonians with the introduction of a pseudofermion. We discuss physical properties of the
condensation energy and behavior of the gap function and the spin singlet order parameter corresponding to
the Kondo effect in relation to the critical level spacing and co-existence. We find that strong local magnetic
moments from the impurities makes the transition temperature for superconductivity reduced. However, weak
couplings � of the superconductivity do not destroy the spin singlet order parameter at all. Finally we derive the
exact equation for the Kondo regime in nanosystem and discuss the condensation energy from the viewpoint of
the energy level.
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1. INTRODUCTION
The Kondo effect has been much attracted great interest in the
properties in semiconductor quantum dots. The Kondo effect can
be understood as a magnetic exchange interaction between a
localized impurity spin and free conduction electrons.1 To mini-
mize the exchange energy, the conduction electrons tend to screen
the spin of the magnetic impurity and the ensemble forms a spin
singlet. In a quantum dot, some exotic properties of the Kondo
effect have been observed.2–4 Recently, Sasaki et al. has found
a large Kondo effect in a quantum dots with an even number of
electrons.5 The spacing of discrete levels in such quantum dots is
comparable with the strength of electron–electron Coulomb inter-
action. The Kondo effect in multilevel quantum dots has been
investigated theoretically by several groups.6–8 They have shown
that the contribution from multilevels enhances the Kondo effect
in normal metals. There are some investigations on the Kondo
effect in quantum dots coupled ferromagnetism,9 noncollinear
magnetism,10 superconductivity11 and so on.12�13

Properties of ultrasmall superconducting grains have been also
theoretically investigated by many groups.15–24 Black et al. have
revealed the presence of a parity dependent spectroscopic gap
in tunnelling spectra of nanosize Al grains.15�16 In such ultra-
small superconducting grains, the bulk gap has been discussed
in relation to physical properties such as the parity gap,21 con-
densation energy,22 electron correlation23 with the dependence of
level spacing of samples.24 In previous works,25 we have also
discussed physical properties such as condensation energy, par-
ity gap, and electron correlation of two-gap superconductivity in
relation to the size dependence and effective pair scattering pro-
cess. The possibility of new two-gap superconductivity has been
also discussed by many groups.26–37

In a standard s-wave superconductor, the electrons form pairs
with antialigned spins and are in a singlet state as well. When
the superconductivity and Kondo effect present simultaneously,
the Kondo effect and superconductivity are usually expected to
be competing physical phenomena. The local magnetic moments
from the impurities tend to align the spins of the electron pairs in
the superconductor which often results in a strongly reduced tran-
sition temperature. Buitelaar et al. have experimentally investi-
gated the Kondo effect in a carbon nanotube quantum dot coupled
to superconducting Au/Al leads.11 The have found that the super-
conductivity of the leads does not destroy the Kondo correlations
on the quantum dot when the Kondo temperature. A more subtle
interplay has been proposed for exotic and less well-understood
materials such as heavy-fermion superconductors in which both
effects might actually coexist.38

In this paper, we investigate the Kondo effect and supercon-
ductivity in ultrasmall grains by using a model, which consists
of sd and reduced BCS Hamiltonians with the introduction of
a pseudofermion. A mean field approximation for the model is
introduced, and we calculate physical properties of the critical
level spacing and the condensation energy. These physical prop-
erties are discussed in relation to the coexistence of both the
superconductivity and the Kondo regime. Finally we derive the
exact equation for the Kondo regime in nanosystem and discuss
the condensation energy from the viewpoint of the correlation
energy.

2. KONDO REGIME COUPLED TO
SUPERCONDUCTIVITY

In nanosize superconducting grains, the quantum level spac-
ing approaches the superconducting gap. It is necessary to treat
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discretized energy levels of the small system. For ultrasmall
superconducting grains, we can consider the pairing-force Hamil-
tonian to describe electronic structure of the system39 and can
know the critical level spacing where the superconducting gap
function vanishes at a quantum level spacing.24 In this section,
we present a model for a system in Kondo regime coupled to
superconductivity and discuss physical properties such as criti-
cal level spacing and condensation energy by using a mean field
approximation in relation to gap function, spin singlet order as
the Kondo effect, coexisitence and so on.

2.1. MODEL
We consider a model coupled to superconductivity for quantum
dots to investigate the Kondo effect in normal metals, which can
be expressed by the effective low-energy Hamiltonian obtained
by the Schrieffer-Wolff transformation:40

H =H0+H1+H2 (1)

where

H0 =
∑
k��

�ka
†
k�ak� +

∑
�

E�d
†
�d� (2)

H1 = J
∑
k�k′

�S+a
†
k′↓ak↑ +S−a

†
k′↑ak↓ +Sz�a

†
k′↑ak↑ −a†

k′ ↓ak↓�� (3)

H2 =−g
∑
k�k′

a†
k↑a

†
k↓ak′↓ak′↑ (4)

a†
k� (ak� ) and d†

� (d� ) are the creation (annihilation) operator
corresponding to conduction electrons and the effective magnetic
particle as an impurity, respectively. In this study we assume the
magnetic particle is fermion S = 1/2 for the simplicity. E means
an extraction energy given by E↑�↓ =−E0±Ez included the Zee-
man effect. The second term in Eq. (1) means the interaction
between conduction electrons and the spin in a quantum dot. S is
the spin operator as S+ = d†

↑d↓, S− = d†
↓d↑, and Sz = �d†

↑d↑ −
d†
↓d↓�/2. The third term corresponds to the interaction between

conduction electrons from the pairing force Hamiltonian.
Here, we introduce a pseudofermion for the magnetic particle

operator41 as

d†
↑ = f↓� d↑ = f †

↓ � d†
↓ = −f↑� d↓ = −f †

↑ (5)

In this transformation, we have the condition

f †
↑ f↑ +f †

↓ f↓ = 1 (6)

We can know ��� = f †
� �0�. The spin operator S can be rewrit-

ten as S+ = f †
↑ f↓, S− = f †

↓ f↑, and Sz = �f †
↑ f↑ − f †

↓ f↓�/2. The
Hamiltonian can be rewritten as

H0 =
∑
k��

�̃kc
†
k�ck� +

∑
�

Ef †
� f� (7)

H1 = J
∑

k�k′���� ′
f †
� f� ′c†k′� ′ck� (8)

H2 =−g
∑
k�k′

c†k↑c
†
k↓ck′↓ck′↑ (9)

where ck� = ∑
i Uikai� with �̃k = ∑

i� j U
†
ki��i�ij − J /2�Ujk . For

the simplicity, we only focus Ez = 0 without an external magnetic
field: E = E0.

2.2. Mean Field Approximation
In this section, we introduce a mean field approximation for the
present Hamiltonian of Eq. (1). Eto et al. have presented the mean
field approximation for the Kondo effect in quantum dots.42

In the mean field approximation, we can introduce the spin
singlet order parameter

	= 1√
2

∑
k��

�f †
� ck�� (10)

This order parameter describes the spin couplings between the
dot states and conduction electrons. The superconducting gap
function can be expressed as


=∑
k

�ck↓ck↑� (11)

Using these order parameters in Eqs. (8) and (9), we obtain
the mean-field Hamiltonian

HMF = ∑
k��

�̃kc
†
k�ck� +

∑
�

Ẽf †
� f� +

√
2J

∑
k��

�	f�c
†
k� +	∗ck�f

†
� �

−g
∑
k

�
∗ck↓ck↑+
c†k↑c
†
k↓� (12)

The constraint of Eq. (6) is taken into account by the second term
with a Lagrange multiplier �. In this study, we assume a constant
density of state with the energy region of the Deby energy, and
the coupling constants can be expressed as J = dJ̃ and g = d�.

3. DISCUSSION
By minimizing the expectation value of HMF in Eq. (12), the
order parameters are determined self-consistently. First, we show
the Kondo effect without the pairing force part (g = 0) in the
framework of the mean field approximation. Next, the Kondo
effect in the presence of the superconductivity is discussed in
relation to the critical level spacing and condensation energy.
Finally, we derive the exact equation for the Kondo effect in
ultrasmall grains coupled to normal metals and discuss properties
such as the condensation energy in relation to Richardson’s exact
equation for the superconductivity.

3.1. Critical Level Spacing in Kondo Effect
In ultrasmall grains such as quantum dots etc., the quantum level
spacing approaches order parameters. For ultrasmall supercon-
ducting grains, the critical level spacing dBCS

c can be expressed as
dBCS
c = 4�De

 exp�−1/�� for even number of electrons, where
�D means the Deby energy. This result suggests that the gap
function of a nanosize system with the level spacing d van-
ishes, when the coupling parameter �c is less than the value
�ln 4�D/d+ �−1. The bulk gap function 
c with �c can be
expressed as 
c = �Dsh

−1�1/�c�.
Figure 1(a) shows the gap function of a nanosize system in the

framework of the standard BCS theory. We can find the region
where the gap function vanishes, when the coupling becomes less
than �c. This means the level spacing is larger than gap function
in this region.

Here we drive the critical level spacing for only the Kondo
regime (� = 0). The equation determining the singlet order
parameter can be expressed as

	=∑
k

	��k −x�

��k −x�2 +	2
(13)
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Fig. 1. Gap function and spin singlet order: (a) The gap function. The gap function vanishes in the region of smaller � value than �c . (b) Spin singlet order
parameter. In the case of J̃ < J̃c , the singlet order vanishes. The system consists of 8 energy levels and 8 electrons with the level spacing d = 1�0 and
�D = 1�0.

where �k = �̃k−�, x= ��̃k+ Ẽ±
√
��̃k − Ẽ�2+4	2��/2 and � is

the chemical potential. For the case of the critical level spacing,
the solution has the spin singlet order vanishes. From Eq. (13),
we can find the critical level spacing dKondo

c for the Kondo regime.

dKondo
c = 4�De

 exp
[
− 1

2
√
2J̃

]
(14)

When the coupling parameter J̃ is smaller than J̃c =
�2
√
2�ln�4�D/d� + ��−1, the spin singlet order parameter

vanishes.
Figure 1(b) shows the spin singlet order parameter of Eq. (10)

in the case g = 0. In the region of J̃ < J̃c, the order parameter
vanishes. This result suggests the critical level spacing in the
Kondo effect.

3.2. Kondo Effect Coupled to Superconductivity
In this study, we consider a simple system which consists of
8 energy levels and 8 electrons and investigate the critical level
spacing and the condensation energy of the coupled system

(a) (b)
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Fig. 2. Physical properties in coupled system: (a) Gap function and spin singlet order parameter. (b) Condensation energy. J̃/J̃c = 0�0�94741�1�8948, and
2.8422. Other parameters are the same.

between the superconductivity and the Kondo regime in the fram-
work of the mean field approximation of Eq. (12).
Figure 2(a) shows the spin singlet order parameter and the gap

function for several cases. We can find the critical level spacings
for the gap function and for the spin singlet order parameter.
When �< �c and J̃ > J̃c , we can find only the spin singlet order
parameters. In the region of �/�c from 1.4 to 1.7 with J̃ /J̃c =
0�189, we can find the coexistence of both the gap function and
the spin singlet order parameter. In larger �/�c than 1.7, only
the gap function still exists, and the spin singlet order parameter
vanishes. In J̃ /J̃c = 0�284, we can find the coexistence in the
region �/�c = 1�7− 2�3. These results suggest that strong local
magnetic moments from the impurities makes the transition tem-
perature for superconductivity reduced. However, weak couplings
� of the superconductivity do not destroy the spin singlet order
parameter at all. These results are a good agreement with the
experimental results.11 We can find that there is the coexistence
region for both the superconductivity and the Kondo regime.
Figure 2(b) shows the condensation energy for several � and

J̃ values. We can find the condensation energy of the coupled
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Fig. 3. Exact solution for the superconductivity: (a) Condensation energy of the exact solution with that obtained by the mean field approximation (b) Pairing
energy level with energy level obtained by the mean field approximation. 8 energy levels, 8 electrons, d = 1�0, �D = 4�0.

system between the superconductivity and the Kondo regime
becomes lower than that of the pure superconductivity. In the
coexistent region, the highest value of the condensation energy
appears in all cases.

3.3. Exact Solution for Kondo Regime
The standard BCS theory gives a good description of the phe-
nomenon of superconductivity in large sample. However, when
the size of a superconductor becomes small, the BCS theory
fails. To investigate physical properties such as the condensa-
tion energy, parity gap, etc. it is necessary to take more accu-
rate treatment. For the superconductivity in ultrasmall grains,
the exact solution to the reduced BCS Hamiltonian presented
by Richardson39 has been applied to investigate such physical
properties.18

By using the wave function describing all pair electron exci-
tations, we can derive the exact solution for the pairing force
(reduced) Hamiltonian

2−
N∑

k=1

�

�̃k −Ei

+
n∑

l=1� l 	=i

2�
El−Ei

= 0 (15)

where N and n are the number of orbital and the number of
the occupied orbital, respectively. Ei corresponds to the exact
orbital. Figure 3 shows the condensation energy and the pair-
ing energy level for the nanosize superconductivity. Note that
physical properties obtained by the mean field approximation
give a good description for the high density of state (d → �).
We can find the different behavior of the condensation energy
from that obtained by the mean field approximation as shown in
Figure 3(a). Figure 3(b) shows qualitative behaivior of the pair-
ing energy level in the ground state. In � of about 1.6, above two
energy levels in Figure 3(b) are completely paired. The pairing
behavior has been already reported by many groups.39

Let us derive the exact equation for the Kondo regime in ultra-
small grains. We can consider the Hamiltonian H = H0 +H1 in
Eq. (1). We introduce a creation operator describing all excited
states of the spin singlet coupling between a conduction electron
and a pseudofermion.

B†
j =

∑
k��

c†k�f�
�̃k −Ej

(16)

where Ej means the exact eigenenergies in the Kondo regime.
The exact eigenstate ��n� for the Kondo regime can be writ-
ten as ��n� =�n

�=1B
†
� �0�. Other electrons, which are not related

to the spin singlet order, contribute Esingle =
∑n

k=1 �̃k to the
eigenenergy. The ground state energy EGS can be written as
EGS =∑n

k=1�Ek+ �̃k�.
By operating the Hamiltonian to the exact eigenstate, we

obtain the condition as

1+
N∑

k=1

J̃

�̃k −Ej

= 0 (17)

This equation gives the exact solution for the Kondo regime.
Note that the creation operator of Eq. (16) might be true boson
by comparing with the case of the reduced BCS model.

Figure 4 shows the condensation energy of the exact solution
in the Kondo regime with that obtained by the mean field approx-
imation. We can find the different behavior of the condensation
energy from that obtained by the mean field approximation. How-
ever, the behavior is similar to that in the superconductivity in
nanosize system.

∆

Fig. 4. Condensation energy for the Kondo regime: all parameters used in
the system are the same: 8 energy levels, 8 electrons, and d = 1�0, �D = 4�0.

376



R E S E A R CH A R T I C L EQuantum Matter 4, 373–377, 2015

4. CONCLUDING REMARKS
We have investigated properties of the Kondo regime coupled
to the superconductivity in ultrasmall grains by using a mean
field approximation. In the framework of the mean field approx-
imation, we have found the critical level spacing for the Kondo
regime. The result suggests that the Kondo effect vanishes, when
the level spacing becomes larger than the critical level spacing.

We have calculated physical properties of the critical level
spacing and the condensation energy of the coupled system by
using the mean field approximation. From the results, we have
found that strong local magnetic moments from the impurities
makes the transition temperature for superconductivity reduced.
However, weak couplings � of the superconductivity do not
destroy the spin singlet order parameter at all. These results are a
good agreement with the experimental results.11 We have found
that there is the coexistence region for both the superconductivity
and the Kondo regime.

Finally we have derived the exact equation for the Kondo
regime in nanosystem and have discussed the condensation
energy from the viewpoint of the energy level. It might be not
easy to find the exact equation for the Kondo regime coupled to
superconductivity. The exact properties such as the condensation
energy etc. in the Kondo regime by using the exact equation will
be presented elsewhere.

In summary, we have investigated the Kondo effect and super-
conductivity in ultrasmall grains by using a model, which con-
sists of sd and reduced BCS Hamiltonians with the introduction
of a pseudofermion. A mean field approximation for the model
have been introduced, and we have calculated physical proper-
ties of the critical level spacing and the condensation energy.
These physical properties have been discussed in relation to the
coexistence of both the superconductivity and the Kondo regime.
Finally we have derived the exact equation for the Kondo regime
in nanosystem and discuss the condensation energy from the
viewpoint of the energy level.
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